Ion Product of Water

Since water is amphoteric, it is capable of acting as both an acid and a base. As an acid, it donates an H^+ ion to become an OH^- ion. As a base, it accepts an H^+ to become an H_3O^+ ion.

It has been shown experimentally that two water molecules will react with one another to form ions according to the following equation.

$$H_2O(l) + H_2O(l) \Leftrightarrow H_3O^+(aq) + OH^-(aq)$$

In this reaction, water acts as both the acid and the base. This reaction will occur even in pure water, resulting in a small amount of ionization. In fact, it has been determined that pure water at $25^{\circ}C$ contains both H_3O^+ and OH^- ions at concentrations of $1.0 \times 10^{-7} mol/L$.

Using the above equation and the known concentrations of H_3O^+ and OH^- ions, we can write an equilibrium expression for pure water and calculate the value of the ion product for water (K_w) .

$$K_{W} = [H_{3}O^{+}][OH^{-}]$$

= (1.0×10⁻⁷)(1.0×10⁻⁷)
$$K_{W} = 1.0 \times 10^{-14}$$

 K_w is useful because it applies not only to pure water, but to every water solution at 25°C, even a solution in which the concentrations of H_3O^+ and OH^- ions are not equal.

Example 1

The concentration of H_3O^+ ions in an acid solution were measured to be $1.0 \times 10^{-2} mol/L$. Determine the concentration of OH^- ions in the solution. The fact that water itself ionizes to form both H_3O^+ and OH^- ions means that all acidic, basic, and neutral solutions contain both H_3O^+ and OH^- ions. It is possible to determine the nature of a water solution (acidic, basic, or neutral) by comparing the relative concentrations of these two ions.

- If $[H_3O^+] = [OH^-]$, the solution is neutral.
- If $[H_3O^+] > [OH^-]$, the solution is acidic.
- If $[H_3O^+] < [OH^-]$, the solution is basic.

Example 2

If the concentration of H_3O^+ in blood is $4.0 \times 10^{-8} mol/L$, is blood acidic, basic, or neutral?

Worksheet

- 1. What is the concentration of OH^- ions in chocolate milk if $[H_3O^+] = 4.5 \times 10^{-7} mol/L$? Is chocolate milk acidic, basic, or neutral?
- 2. What is the concentration of H_3O^+ ions in black coffee if $[OH^-] = 1.3 \times 10^{-9} mol/L$? Is black coffee acidic, basic, or neutral?
- 3. What is the concentration of OH^- ions in saturated lime if $[H_3O^+] = 3.98 \times 10^{-13} mol/L$? Is lime acidic, basic, or neutral?
- 4. What is the concentration of H_3O^+ ions in a wheat flour and water solution if $[OH^-] = 1.0 \times 10^{-8} \ mol/L$? Is this solution acidic, basic, or neutral?
- 5. Complete the following table by determining the missing concentrations. State whether each solution is acidic, basic, or neutral.

$\left[H_{3}O^{+}\right]$	$\left[OH^{-} ight]$	Acidic, basic, or neutral?
	$1.0 \times 10^{-5} mol/L$	
	$4.0 \times 10^{-9} mol/L$	
$1.2 \times 10^{-8} mol/L$		