Ion Product of Water

Since water is amphoteric, it is capable of acting as both an acid and a base. As an acid, it donates an H^{+}ion to become an OH^{-}ion. As a base, it accepts an H^{+}to become an $\mathrm{H}_{3} \mathrm{O}^{+}$ion.

It has been shown experimentally that two water molecules will react with one another to form ions according to the following equation.

$$
\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \Leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

In this reaction, water acts as both the acid and the base. This reaction will occur even in pure water, resulting in a small amount of ionization. In fact, it has been determined that pure water at $25^{\circ} \mathrm{C}$ contains both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions at concentrations of $1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$.

Using the above equation and the known concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions, we can write an equilibrium expression for pure water and calculate the value of the ion product for water (K_{W}).

$$
\begin{aligned}
K_{W} & =\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& =\left(1.0 \times 10^{-7}\right)\left(1.0 \times 10^{-7}\right) \\
K_{W} & =1.0 \times 10^{-14}
\end{aligned}
$$

K_{W} is useful because it applies not only to pure water, but to every water solution at $25^{\circ} \mathrm{C}$, even a solution in which the concentrations of $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions are not equal.

Example 1

The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in an acid solution were measured to be $1.0 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$. Determine the concentration of OH^{-}ions in the solution.

The fact that water itself ionizes to form both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions means that all acidic, basic, and neutral solutions contain both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}ions. It is possible to determine the nature of a water solution (acidic, basic, or neutral) by comparing the relative concentrations of these two ions.

- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, the solution is neutral.
- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is acidic.
- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$, the solution is basic.

Example 2

If the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in blood is $4.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$, is blood acidic, basic, or neutral?

Worksheet

1. What is the concentration of OH^{-}ions in chocolate milk if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=4.5 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$? Is chocolate milk acidic, basic, or neutral?
2. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in black coffee if $\left[\mathrm{OH}^{-}\right]=1.3 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$? Is black coffee acidic, basic, or neutral?
3. What is the concentration of OH^{-}ions in saturated lime if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.98 \times 10^{-13} \mathrm{~mol} / \mathrm{L}$? Is lime acidic, basic, or neutral?
4. What is the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions in a wheat flour and water solution if $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$? Is this solution acidic, basic, or neutral?
5. Complete the following table by determining the missing concentrations. State whether each solution is acidic, basic, or neutral.

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	Acidic, basic, or neutral?
	$1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$	
	$4.0 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$	
$1.2 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$		

